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Abstract. Symmetric data objects have been introduced by Cray Inc. in context 
of SHMEM remote memory access communication on Cray T3D/E systems 
and later adopted by SGI for their Origin servers. Symmetric data objects 
greatly simplify parallel programming by allowing programmers to reference 
remote instance of a data structure by specifying address of the local 
counterpart. The current paper describes how symmetric data objects and 
remote memory access communication could be implemented in Fortran 95 
without requiring specialized hardware or compiler support. NAS Multi-Grid 
parallel benchmark was used as an application example and demonstrated 
competitive performance to the standard MPI implementation. 

1. Introduction 

Fortran is an integral part of the computing environment at major scientific 
institutions.  It is often the language of choice for developing applications that model 
complex physical, chemical, and biological systems.  In addition, Fortran is an 
evolving language [1].  The Fortran 90/95 standard introduced many new constructs, 
including derived-data types, new array features and operations, pointers, increased 
support for code modularization, and enhanced type safety. These features are 
advantageous to scientific applications and improve the programmer productivity. 

Remote memory access (RMA) operations facilitate an intermediate programming 
model between message passing and shared memory. This model combines some 
advantages of shared memory, such as direct access to shared/global data, and the 
message-passing model, namely the control over locality and data distribution. 
Certain types of shared memory applications can be implemented using this approach. 
In some other cases, remote memory operations can be used as a high-performance 
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alternative to message passing. On many modern platforms, RMA is directly 
supported by hardware and is the lowest-level and often most efficient 
communication paradigm available. The RMA has been offered in numerous portable 
interfaces ranging from SHMEM [10, 11, 16], ARMCI [12], and MPI-2. Among 
these, Cray SHMEM has been the most widely used interface and offered by 
hardware vendors such as Cray, IBM, HP for their architectures. Some important 
characteristics of SHMEM are the ease of use, simplicity, demonstrated potential for 
achieving high performance.  

One of the important characteristics of SHMEM is support for symmetric data 
objects. This concept allows the programmer to access remote instances of data 
structures through references to the local instance. In particular, the programmer is 
not required to keep track of addresses on remote processors as mandated by other 
RMA models such as LAPI[15] on the IBM SP where addresses for remote instances 
of the same data object can be different and thus need to be exchanged and stored on 
all processors.  Implementation of symmetric data objects is difficult without 
hardware and/or OS assistance on clustered systems. This is because the virtual 
memory addresses allocated by the operating system for storing instances of the same 
data structure in a cluster can be different across the machine. Without symmetric 
data objects, the programmer would be required to store O(P2) addresses on the 
machine. In addition, the overall programming model is harder to use and the 
application codes become more error prone.   

In this paper, we take advantage of the new Fortran 95 features to provide high-
level interfaces to one-sided operations on multidimensional arrays consistent with 
symmetric data-object model of SHMEM. This work is inspired by Co-Array Fortran 
[14] with its ability to reference arbitrary sections of so called co-arrays using high-
level array assignments. Co-arrays represent a special type of Fortran 95 arrays 
defined on all tasks in the SPMD program. The main contributions of this paper are: 
1) definition of an interface that support important features of SHMEM and CAF 
using a library- rather than compiler-based approach: symmetric data objects of 
SHMEM and one-sided high-level access to multidimensional arrays that CAF offers 
(SHMEM does not offer such ability), 2) a description of a portable implementation 
of these features that do not require hardware or OS support, and 3) demonstration 
that the proposed approach can deliver high performance, both in context of 
microbenchmarks as well as the NAS NPB Multigrid (MG) benchmark [4].  

The remainder of the paper is organized as follows. Section 2 describes the 
proposed interface and discusses its characteristics. Section 3 describes the 
implementation based on Chasm and the ARMCI one-sided communication library. 
Section 4 reports experimental results on the Linux cluster with Myrinet that 
demonstrate that our implementation outperforms the NAS NPB version of MG.   

2. Proposed Approach 

We propose to support symmetric data objects and RMA for Fortran 95 
applications based on Fortran 95 array pointers with special memory allocation 
interface and a set of remote memory access communication interfaces handling slices 
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(sections) of Fortran 95 arrays. These interfaces allow users to allocate/free 
multidimensional Fortran 95 arrays and to communicate data held in this memory 
using simple get/put semantics. In addition, the reference to the remote instance of 
arrays does not require users to keep track of addresses on remote note. A single 
Fortran 95 pointer is used to represent local and remote instances of a 
multidimensional array. A unique feature of these interfaces is that they allow users to 
take full advantage of Fortran 95 array mechanisms (like array-valued expressions). 

The Fortran interfaces are as follows.  Memory allocation is done with calls to the 
generic interfaces Malloc_fa and Free_fa (shown below for real, two-
dimensional arrays only), 

 
module Mem_F95 
 
  interface Malloc_fa 
    subroutine Malloc_2DR(a, lb, ub, rc) 
      real, pointer :: a(:,:) 
      integer, intent(in) :: lb(2), ub(2) 
      integer, intent(out) :: rc 
    end subroutine Malloc_2DR 
  end interface 
 
  interface Free_fa 
    subroutine Free_2DR(a, rc) 
      real, pointer :: a(:,:) 
      integer, intent(out) :: rc 
    end subroutine Free_2DR 
  end interface 
 
end module Mem_F95 
 

In the above, the arrays lb and ub contain the lower and upper bounds of the array to 
be allocated and the parameter rc is an error code. 

 
Similarly, the generic interfaces for RMA communication are Put_fa and 

Get_fa. To save space, here we only present the interface to the first one for the 
double precision two dimensional arrays (the get interface is similar). 
 
module Types_fa 
type Slice_fa 
    integer :: lo(7) 
    integer :: hi(7) 
    integer :: stride(7) 
  end type Slice 
end module Types_fa 
 
module Mov_F95 
  interface Put_fa 
    subroutine Put_2DR(src, src_slc, 
                       dst, dst_slc, proc, rc) 
      use Types_fa 
      real, pointer :: src(:,:), dst(:,:) 
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      type(Slice_fa), intent(in) :: src_slc, dst_slc 
      integer, intent(in) :: proc, rank 
      integer, intent(out) :: rc 
    end subroutine Put_2DR 
  end interface 

 
In the communication interfaces, src and dst are the source and destination 

arrays respectively, src_slc and dst_slc contain information about the memory 
portion (array section) of the source and destination arrays to be used, proc is the 
processor number of the destination array, and rc is an error return code. In addition 
to being able access sections of multidimensional arrays, to be consistent with the 
Fortran 95 capabilities for arrays, the user can also specify stride information. 

The current implementation supports integer, floating, and complex data types of 
the 8- and 4-byte kinds. Array dimensions ranging from one to seven (Fortran limit) 
are handled. By exploiting Fortran 95 function name overloading, we can use a single 
name for the put operation Put_fa to handles all data types and array dimensions 
using a single interface. The defined memory allocation interfaces defined above are 
mandatory for allocating memory to be accessed remotely from other processors. 
However, they are not required for local arrays: source of data in put, and destination 
in get. 

The semantics of the RMA operations (progress, ordering) follow closely that of 
the Cray SHMEM. In order to provide the application programmer with abilities to 
hide latency, we introduced nonblocking interfaces to put/get calls. A nonblocking 
call returns before the user buffer can be accessed and requires a special wait function 
to complete. This feature is not available in SHMEM. (Although the CAF standard 
does not offer this capability, the Rice CAF compiler adds directives that change 
semantics of the array assignments to nonblocking in so called non-blocking regions.)  

3. Implementation 

Unfortunately, the Fortran 95 standard alone does not provide sufficient 
capabilities to implement the memory management required to support symmetric 
data objects. However, this is made possible by the use of the Chasm array-descriptor 
library [9]. In addition, we use the ARMCI portable RMA library to handle 
communication. Our approach also relies on MPI for job startup and control. In fact, 
the user can use the interfaces described in the previous section in the MPI programs 
and take advantage of the full capabilities of MPI e.g., collective operations. 

Chasm 

Chasm [12, 3] is language transformation system providing language 
interoperability between Fortran and C/C++.  Language interoperability is provided 
by stub and skeleton interfaces.  This code is generated by language transformation 
programs taking as input existing user C, C++ or Fortran source code and generating 
the stub and skeleton interfaces to the input code as output [3]. 
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One of the challenges of language interoperability with Fortran is that Fortran 

assumed-shape array arguments are passed by an array descriptor, rather than as a 
simple memory address.  Array descriptors contain meta data about the array, 
including the base address of the array, the lower and upper bounds for each 
dimension of the array, and sometimes, the rank of the array and the type of an array 
element.  The key point is that the format of the array descriptor is not specified by 
the language standard, but is left to be specified by the vendor of the Fortran 
compiler.  Chasm provides generic C interfaces to the Fortran, vendor-specific array 
descriptors.  Without the Chasm array-descriptor library, there would be no way to 
call the ARMCI library from Fortran and allocate Fortran 95 arrays using the special 
ARMCI memory necessary for remote communication. 

It should be noted that the need for the Chasm array-descriptor library will be 
reduced somewhat once compiler vendors have implemented the Fortran 2003 
standard [8].  Fortran 2003 contains standard mechanisms for interoperating with C 
that allow Fortran array pointers to be associated with memory allocated from C.  In 
addition, a modified version of the Chasm, array-descriptor interface has been 
accepted by the Fortran J3 committee for possible inclusion in the next Fortran 
standard.  This would then allow the Fortran interfaces, introduced in the previous 
section, to be used in a language standard way, with no additional stub or skeleton 
code needed.  Until this time, either Chasm or Fortran 2003 compilers (with slightly 
modified Fortran stub code) will be needed. 

ARMCI 

The Aggregate Remote Memory Copy Interface (ARMCI) [6] is a portable RMA 
communication library. It has been used for implementing distributed array libraries 
such as Global Arrays, other communication libraries such as Generalized Portable 
SHMEM [10], and compiler run-time systems such as PCRC Adlib [13] or the 
portable Co-Array Fortran compiler at Rice University [5]. ARMCI offers an 
extensive set of functionality in the area of RMA communication: 1) data transfer 
operations; 2) atomic operations; 3) memory management and synchronization 
operations; and 4) locks. In scientific computing, applications often require transfers 
of noncontiguous data that corresponds to fragments of multidimensional arrays, 
sparse matrices, or other more complex data structures. With remote memory 
communication APIs that support only contiguous data transfers, it is necessary to 
transfer noncontiguous data using multiple communication operations. This often 
leads to inefficient network utilization and involves increased overhead. ARMCI, 
however, offers explicit noncontiguous data interfaces: strided and generalized I/O 
vector that allow description of the data layout so that it could, in principle, be 
transferred in a single message. Of course, the effectiveness of actual transfers 
depends on the ability of underlying networks to deal with noncontiguous data (e.g., 
scatter/gather operations). However, even when scatter/gather operations are not 
supported by the network, the ARMCI strided and vector operations take advantage of 
the information -- for example, at the level of data packing/unpacking -- so that the 
overall number of messages and network packets is reduced. The strided interfaces 
are important for Fortran 95 applications that use multidimensional arrays. 
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Fortran 95 Interfaces 

The C side of the implementation is composed of 10 functions. Four of the 
functions are administrative functions for initializing Fortran array descriptor 
information, cleaning up, terminating, and synchronizing that take no arguments. The 
other six are functions for allocating Fortran 95 arrays that the ARMCI data 
movement routines can handle, blocking put and get operations for the data 
movement, their nonblocking analogs, and a function to free the allocated deferred 
shape arrays.  

These functions assume the following Fortran calling convention. When calling 
routines with the deferred shape arrays (allocatable) as arguments, each deferred 
shape array argument contributes two addresses to the actual argument list. The first 
is the data address of the first element of the array and is in order specified in the 
arguments of the Fortran call/function reference. The second is the address of the 
dope vector describing the deferred shape array and is placed after the end of the 
arguments listed in the Fortran call or function reference. Routines with more than 
one deferred shape array have all of the addresses of the dope vectors concatenated at 
the end of the argument list appearing in the same relative order as the corresponding 
deferred shape array in the Fortran argument list. To support symmetric data objects 
even on clusters with virtual memory nodes, we allocate extra array memory (in 
addition to the user specific portion) to store array pointers on the remote nodes. 
When user specifies pointer to the local instance of the Fortran 95 array, we access 
the appropriate pointer for the specified processor and pass the required information 
to ARMCI put/get calls. 

On the Fortran 95 side of the interface there are corresponding routines to allocate, 
put, get (blocking/nonblocking) and free array memory. Fortran 95 does not have the 
notion of a generic pointer type, the equivalent of a (void *) in C. Each pointer in 
fortran must point to an array of specified type and dimension (number of indices 
used to reference elements in the array). Module procedures are used to overload the 
C functionality of void *, giving a similar interface on the Fortran side where the user 
does not have to use a different function name for using ARMCI routines on different 
data types. Six types of elementary data are supported for one to seven dimensions 
yielding 42 Fortran routines for each corresponding C function (allocate, free, put, get 
and nonblocking put and get). The six Fortran data types supported are four (I4) and 
eight- (I8) byte integers, four- (R4) and eight- (R8) byte floating point numbers and 
eight (C4) and sixteen (C8) byte complex numbers. The following parameters provide 
a portable shorthand for defining these types and are found in the definekind.Fortran 
95 file: 
module definekind 
   integer, parameter :: I4 = SELECTED_INT_KIND(9) 
   integer, parameter :: I8 = SELECTED_INT_KIND(16) 
   integer, parameter :: R4 = SELECTED_REAL_KIND(5) 
   integer, parameter :: R8 = SELECTED_REAL_KIND(12) 
   integer, parameter :: C4 = SELECTED_REAL_KIND(5) 
   integer, parameter :: C8 = SELECTED_REAL_KIND(12) 
end module definekind 
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For each operation in each of the 42 flavors, the definekind module is included 

and the appropriate type and dimension arguments are declared in an interface block 
to the generic C routine.  

Sample RMA code using Fortran 95 interfaces 

Below is a sample code snippet that allocates a couple of 50X50 arrays of integers, 
src_arr and dst_arr, and does a put operation from one to another. These arrays 
are first allocated with Malloc_fa interface and then src and dst slice information is 
filled up before doing the put communication. 

 
integer(kind=4),pointer::src_arr(:,:),dst_arr(:,:) 
type(Slice_fa) :: src_sl,dst_sl 
integer :: lb(2), ub(2), ierr 
lb(:) = 1 
ub(:) = 50 
call Malloc_fa(src_arr,lb,ub,ierr) 
if (ierr .ne. 0) call myerror() 
call Malloc_fa(dst_arr,lb,ub,ierr) 
if (ierr .ne. 0) call myerror() 
src_sl%lo(:) = 1 
src_sl%hi(:) = 25 
src_sl%stride(:) = 2 
dst_sl%lo(:) = 25 
dst_sl%hi(:) = 50 
dst_sl%stride(:) = 2 
Put_fa(src_arr,drc_sl,dst_arr,dst_sl,dst_proc,ierr) 

3.Experimental Evaluation 

We measured the latency and bandwidth of the Fortarn 95 RMA calls with 
microbenchmarks. We also ported the NAS MG benchmark to use Fortran 95. The 
experimental evaluation was carried out on a 24-node dual processor  Intel Itanium2 
1GHz cluster interconnected with Myrcom’s GM interconnect [7]. The cluster was 
running Linux version 2.4.20 operating system. We used the GM dual port E cards, 
GM 2.1.4 and MPICH 1.2.5..12. For this test, we used Intel IFC Fortran 7.0 compilers 
and the 2.96 version of the GNU C compiler. We also used ARMCI 1.1 and Chasm 
1.1.0 for the implementation. 

Microbenchmarks 

We measured the latency and bandwidth of Fortran 95 RMA interfaces with a 
microbenchmark that does consecutive Put and Get operations from different memory 
locations and averages the time taken for each operation. This is a simple 
microbenchmark that shows the bandwidth and latency of the Fortran 95 RMA 
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interfaces. In addition we also used a similar microbenchmark to measure the 
bandwidth and latency of ARMCI Get and Put operations in order to measure the 
overhead from using Fortran 95 interfaces that involved interface mapping and all the 
dope vector manipulations. The bandwidth of the Get and Put operations for the 
Fortran 95 RMA interfaces is shown in Figure 1. The figure also includes the 
bandwidth of the corresponding ARMCI Put and Get calls. The overhead is 
independent of the message size and it is related to the cost of duplicating dope vector 
through Chasm that includes calloc system call. Based on these findings, the next 
version of Chasm will include an alternative mechanism for accessing some of the 
information stored in the dope vector that will be based on portable macros rather 
than duplication of the dope vector. The asymptotic b/w in the above 
microbenchmarks is consistent with bw numbers of Myricom GM [7]. 

NAS MG Benchmark  

The Numerical Aerodynamic Simulation (NAS) parallel benchmarks (NPB) are a 
set of programs designed at NASA. Our starting point was NPB 2.4 [4] 
implementation written in MPI and distributed by NASA, we modified it to be 
compiled as a Fortran 95 file. We replaced MPI calls with the Fortran 95 non-
blocking RMA interfaces. In addition to the mere replacement of the point-to-point 
message passing communications part of the current message-passing version of MG 
NAS kernels, an additional set of communication buffers were used to better utilize 
the one-sided nature of the RMA interfaces. Figure 2 shows the performance of NAS 
Fortran 95 MG version written with Fortran 95 RMA interface and is compared to the 
original MPI implementation of NAS which has been compiled with Intel Fortran 95 
compiler as an Fortran 95 file. Despite the overhead Fortran 95 interfaces involve,, 
the RMA Fortran 95 RMA interface version of the MG benchmark outperforms the 
MPI version of NAS MG benchmark for Class B and Class C and performs in par 
with the MPI version for the Class A version of the benchmarks. The performance 
gains are contributed to the increased asynchronicity of the RMA model as compared 
to the two-sided message passing implementation of the NAS NPB MG benchmark. 
Table 1 shows the percentage improvement shown by the Fortran 95 RMA interface 

Figure 1- Left: Bandwidth of a contiguous Fortran 95 (labled F95 in the figure)
Put_fa compared to ARMCI put. Right: Bandwidth of the Fortran 95 Get_fa 
compared to ARMCI Get operation. 
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implementation of NAS MG over the standard MPI implementation of NAS MG. Up 
to 30% improvement can be seen. 

4. Conclusions and Future Work 

The current paper described how symmetric data objects and high-level array oriented 
RMA interfaces can be implemented for Fortran 95 applications. The proposed 
approach leads to simple yet efficient code, as demonstrated in the context of the NAS 
NPG Multi-Grid benchmark. In the process of developing the interface we identified 
sources of overhead involved in accessing elements of the dope vector through 
Chasm. The next version of Chasm will address them by providing macros for direct 
access to the information stored in the dope vector required by these interfaces.  Our 
future work in addition to these performance optimizations will include performance 
comparisons with the Co-Array Fortran code on the Cray X1 where the native Co-
Array compiler is available as well as to the Rice compiler on Linux clusters. 
The microbenchmarks show the bandwidth of the Fortran 95 interfaces. The 
implementation of NAS MG using these Fortran 95 RMA interfaces outperforms the 

 

NPROC 
%improvement 

over MPI-Class B 
%improvement 

over MPI-Class C 
2 2.0 10.8 
4 30.1 19.9 
8 5.6 8.3 
16 4.4 18.1 
32 12.2 21.4 

Table -1 percentage improvement over the MPI version of NAS 
MG of the MG implementation using Fortran 95 RMA interface  

Figure 2- Fortran 95 (labled as F95 in the figure) RMA interfaces vs. MPI 
implementation of NAS MG benchmark for Class A, B and C 
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MPI version of the benchmark demonstrating that the non-blocking one-sided nature 
of RMA is preserved and utilized despite the overhead involved in pointer 
calculations and dope vector manipulations. 
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